# 1. Enhances contrast in large almost uniform regions.
import skimage
from skimage import data
from skimage import exposure
from matplotlib import pyplot as plt
camera = data.camera()
camera_equalized = exposure.equalize_hist(camera)
plt.imshow(camera_equalized)
<matplotlib.image.AxesImage at 0x7f60bd119fd0>

# 2. Data Set reading
from sklearn import datasets
# Load data
iris= datasets.load_iris()
# Print shape of data to confirm data is loaded
print(iris.data.shape)
(150, 4)
# 3. Train and Test Split
X = iris.data
y = iris.target
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size = 0.4, random_state=1
)
# 4. USing svm
from sklearn import svm
from sklearn import metrics
classifier_svm = svm.LinearSVC()
classifier_svm.fit(X_train, y_train)
y_pred = classifier_svm.predict(X_test)
# Finding accuracy by comparing actual response values(y_test)with predicted response value(y_pred)
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
# Providing sample data and the model will make prediction out of that data
sample = [[5, 5, 3, 2], [2, 4, 3, 5]]
preds = classifier_svm.predict(sample)
pred_species = [iris.target_names[p] for p in preds]
print("Predictions:", pred_species)
Accuracy: 0.9166666666666666
Predictions: ['setosa', 'virginica']
/home/vaish/miniconda3/envs/py38/lib/python3.8/site-packages/sklearn/svm/_base.py:976: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "
# 5. Linear Regression
from sklearn import linear_model
reg = linear_model.LinearRegression()
# use it to fit a data
reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
# Let's look into the fitted data
print(reg.coef_)
[0.5 0.5]
# 6. Binarisation - Convert numerical values into boolean values
import numpy as np
from sklearn import preprocessing
input_data = np.array(
[[2.1, -1.9, 5.5],
[-1.5, 2.4, 3.5],
[0.5, -7.9, 5.6],
[5.9, 2.3, -5.8]]
)
data_binarized = preprocessing.Binarizer(threshold=0.5).transform(input_data)
print("Binarized data:\n", data_binarized)
Binarized data:
[[1. 0. 1.]
[0. 1. 1.]
[0. 0. 1.]
[1. 1. 0.]]
# 7. Removal of mean
import numpy as np
from sklearn import preprocessing
input_data = np.array(
[[2.1, -1.9, 5.5],
[-1.5, 2.4, 3.5],
[0.5, -7.9, 5.6],
[5.9, 2.3, -5.8]]
)
#displaying the mean and the standard deviation of the input data
print("Mean =", input_data.mean(axis=0))
print("Stddeviation = ", input_data.std(axis=0))
#Removing the mean and the standard deviation of the input data
data_scaled = preprocessing.scale(input_data)
print("Mean_removed =", data_scaled.mean(axis=0))
print("Stddeviation_removed =", data_scaled.std(axis=0))
Mean = [ 1.75 -1.275 2.2 ]
Stddeviation = [2.71431391 4.20022321 4.69414529]
Mean_removed = [1.11022302e-16 0.00000000e+00 0.00000000e+00]
Stddeviation_removed = [1. 1. 1.]
# 8. Scaling
import numpy as np
from sklearn import preprocessing
Input_data = np.array(
[
[2.1, -1.9, 5.5],
[-1.5, 2.4, 3.5],
[0.5, -7.9, 5.6],
[5.9, 2.3, -5.8]
]
)
data_scaler_minmax = preprocessing.MinMaxScaler(feature_range=(0,1))
data_scaled_minmax = data_scaler_minmax.fit_transform(input_data)
print ("\nMin max scaled data:\n", data_scaled_minmax)
Min max scaled data:
[[0.48648649 0.58252427 0.99122807]
[0. 1. 0.81578947]
[0.27027027 0. 1. ]
[1. 0.99029126 0. ]]
# 9. Normalisation
import numpy as np
from sklearn import preprocessing
Input_data = np.array(
[
[2.1, -1.9, 5.5],
[-1.5, 2.4, 3.5],
[0.5, -7.9, 5.6],
[5.9, 2.3, -5.8]
]
)
data_scaler_minmax = preprocessing.MinMaxScaler(feature_range=(0,1))
data_scaled_minmax = data_scaler_minmax.fit_transform(input_data)
print ("\nMin max scaled data:\n", data_scaled_minmax)
Min max scaled data:
[[0.48648649 0.58252427 0.99122807]
[0. 1. 0.81578947]
[0.27027027 0. 1. ]
[1. 0.99029126 0. ]]
# 10. Pipelining
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.tree import DecisionTreeClassifier
# import some data within sklearn for iris classification
iris = datasets.load_iris()
X = iris.data
y = iris.target
# Splitting data into train and testing part
# The 25 % of data is test size of the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
# importing pipes for making the Pipe flow
from sklearn.pipeline import Pipeline
# pipe flow is :
# PCA(Dimention reduction to two) -> Scaling the data -> DecisionTreeClassification
pipe = Pipeline([('pca', PCA(n_components = 2)), ('std', StandardScaler()), ('decision_tree', DecisionTreeClassifier())], verbose = True)
# fitting the data in the pipe
pipe.fit(X_train, y_train)
# scoring data
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, pipe.predict(X_test)))
[Pipeline] ............... (step 1 of 3) Processing pca, total= 0.0s
[Pipeline] ............... (step 2 of 3) Processing std, total= 0.0s
[Pipeline] ..... (step 3 of 3) Processing decision_tree, total= 0.0s
0.868421052631579
# 11. Cross val score
from sklearn.model_selection import cross_val_score
clf = svm.SVC(kernel='linear', C=1)
scores = cross_val_score(clf, X, y, cv=5)
scores
array([0.96666667, 1. , 0.96666667, 0.96666667, 1. ])
# 12. Single metric cross validate
from sklearn import datasets, linear_model
from sklearn.model_selection import cross_validate
from sklearn.metrics import make_scorer
from sklearn.metrics import confusion_matrix
from sklearn.svm import LinearSVC
diabetes = datasets.load_diabetes()
X = diabetes.data[:150]
y = diabetes.target[:150]
lasso = linear_model.Lasso()
cv_results = cross_validate(lasso, X, y, cv=3)
print(sorted(cv_results.keys()))
print(cv_results['test_score'])
['fit_time', 'score_time', 'test_score']
[0.33150734 0.08022311 0.03531764]
# 13. Multiple metric cross validate
scores = cross_validate(lasso, X, y, cv=3,scoring=('r2', 'neg_mean_squared_error'),return_train_score=True)
print(scores['test_neg_mean_squared_error'])
print(scores['train_r2'])
[-3635.51152303 -3573.34242148 -6114.78229547]
[0.28010158 0.39088426 0.22784852]
# 14. Confusion matrix
from sklearn.metrics import confusion_matrix
y_true = [2, 0, 2, 2, 0, 1]
y_pred = [0, 0, 2, 2, 0, 2]
confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])
# 15. Accuracy Score
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
actual = [1, 1, 0, 1, 0, 0, 1, 0, 0, 0]
predicted = [1, 0, 0, 1, 0, 0, 1, 1, 1, 0]
results = confusion_matrix(actual, predicted)
print ('Confusion Matrix :')
print(results)
print ('Accuracy Score :',accuracy_score(actual, predicted) )
print ('Report : ')
print (classification_report(actual, predicted) )
Confusion Matrix :
[[4 2]
[1 3]]
Accuracy Score : 0.7
Report :
precision recall f1-score support
0 0.80 0.67 0.73 6
1 0.60 0.75 0.67 4
accuracy 0.70 10
macro avg 0.70 0.71 0.70 10
weighted avg 0.72 0.70 0.70 10
# 16. Report
from sklearn.metrics import classification_report
y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3
accuracy 0.60 5
macro avg 0.50 0.56 0.49 5
weighted avg 0.70 0.60 0.61 5
# 17. Linear regression
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
# Load the diabetes dataset
diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)
# Use only one feature
diabetes_X = diabetes_X[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes_y[:-20]
diabetes_y_test = diabetes_y[-20:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
# Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)
# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print('Mean squared error: %.2f'
% mean_squared_error(diabetes_y_test, diabetes_y_pred))
# The coefficient of determination: 1 is perfect prediction
print('Coefficient of determination: %.2f'
% r2_score(diabetes_y_test, diabetes_y_pred))
# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show()
Coefficients:
[938.23786125]
Mean squared error: 2548.07
Coefficient of determination: 0.47

# 18. Load Digits
from sklearn.datasets import load_digits
digits = load_digits()
digits.images.shape
(1797, 8, 8)
# 19. Eliptic envelope
import numpy as np
from sklearn.covariance import EllipticEnvelope
true_cov = np.array([[.5, .6],[.6, .4]])
X = np.random.RandomState(0).multivariate_normal(mean = [0, 0], cov=true_cov,size=500)
cov = EllipticEnvelope(random_state = 0).fit(X)
# Now we can use predict method. It will return 1 for an inlier and -1 for an outlier.
cov.predict([[0, 0],[2, 2]])
<ipython-input-34-ba0df6672c1b>:6: RuntimeWarning: covariance is not positive-semidefinite.
X = np.random.RandomState(0).multivariate_normal(mean = [0, 0], cov=true_cov,size=500)
array([ 1, -1])
# 20. Number finding
import matplotlib.pyplot as plt
fig, axes = plt.subplots(10, 10, figsize=(8, 8),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))
for i, ax in enumerate(axes.flat):
ax.imshow(digits.images[i], cmap='binary', interpolation='nearest')
ax.text(0.05, 0.05, str(digits.target[i]),
transform=ax.transAxes, color='green')

# 21. Isolation forest
from sklearn.ensemble import IsolationForest
X = np.array([[-1, -2], [-3, -3], [-3, -4], [0, 0], [-50, 60]])
OUTDClf = IsolationForest(n_estimators = 10)
OUTDClf.fit(X)
IsolationForest(n_estimators=10)
# 22. Mainfold
from sklearn.manifold import Isomap
iso = Isomap(n_components=2)
iso.fit(digits.data)
data_projected = iso.transform(digits.data)
data_projected.shape
(1797, 2)
# 23. Dimensionality Reduction
from sklearn.datasets import load_digits
from sklearn.manifold import Isomap
X, _ = load_digits(return_X_y=True)
print(X.shape)
embedding = Isomap(n_components=2)
X_transformed = embedding.fit_transform(X[:100])
print(X_transformed.shape)
(1797, 64)
(100, 2)
# 24. Random projection
import numpy as np
from sklearn import random_projection
range = np.random.RandomState(0)
X = range.rand(10,2000)
X = np.array(X, dtype = 'float32')
print(X.dtype)
Transformer_data = random_projection.GaussianRandomProjection()
X_new = Transformer_data.fit_transform(X)
print(X_new.dtype )
float32
float64
# 25. Naive Bayes classifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
data = load_breast_cancer()
label_names = data['target_names']
labels = data['target']
feature_names = data['feature_names']
features = data['data']
print(label_names)
print(labels[0])
print(feature_names[0])
print(features[0])
train, test, train_labels, test_labels = train_test_split(
features,labels,test_size = 0.40, random_state = 42
)
from sklearn.naive_bayes import GaussianNB
GNBclf = GaussianNB()
model = GNBclf.fit(train, train_labels)
preds = GNBclf.predict(test)
print(preds)
['malignant' 'benign']
0
mean radius
[1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01
1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02
6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01
1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01
4.601e-01 1.189e-01]
[1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0
1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0
1 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0
1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0
0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
0 0 1 1 0 1]